# Possibility of network voltage control using demand side management

#### **Prof Jovica V. Milanović**

Dipl.Ing., MSc, PhD, DSc, CEng, FIET, FIEEE, Foreign member of SAES Deputy Head of School & Director of External Affairs



Manchester, M13 9PL, United Kingdom 33<sup>rd</sup> Symposium CIGRÉ Serbia 6<sup>th</sup> June 2017, Zlatibor, Serbia,

#### **Outline of presentation**

- Network & Voltage controllability challenges
- Advanced demand profiling & management
- How it could be used for voltage control
- Summary

### Network & Voltage controllability challenges

#### The drivers

- Evolving/new market structures and operation
  - Increasingly liberalised market
  - Increased cross-boarder bulk power transfers to facilitate effectiveness of market mechanisms
- The participation of controllable (that can be both, controlled and used for control) plant in generation mix is reducing
- The nature and behaviour of load has changed and is changing (e.g., spatial in addition to temporal variation)
- New transmission components (still insufficiently understood, compared to "old" technologies) are being added to the system

#### **Controllability challenge**

- The complexity and vulnerability of the system is increasing
- The system control, stability and security are becoming increasingly important and much more time dependent than before



- "Every little helps" is becoming very important
  - Additional/Advanced controllability of RES
  - Deployment and control of energy storage
  - Efficient Demand Side Management (DSM)

## Advanced demand profiling & management

#### (Advanced) Demand profiling

#### Identification/estimation and forecasting of static composition (in terms of load categories and load controllability) and dynamic response of demand

#### Why (or) Do we need to consider it ?



- To apply efficiently Demand Side Management (shift load from the hours of high consumption to hours of low consumption) to facilitate required "change in paradigm" and enable load-follows-generation approach for efficient integration of RES we need to be able to forecast (reasonably accurately) the demand from 30 min (or less) to a day (or more) in advance and to control it.
  - At present only demand for real power at bulk supply points is forecasted
- Forecasting only total demand for real power (P) is not sufficient
  - the information about the available reactive power (Q) is required as well,
    e.g., for voltage regulation

#### **Efficient DSM**

- Knowledge of total demand (be it accurate and for both P and Q) is not sufficient
  - the information about demand composition in terms of controllable (that can be shifted from one hour to the next) and uncontrollable load is needed
- Knowledge of demand composition is not sufficient
  - the information about load category (based on dynamic response to system disturbances) mix in both controllable and uncontrollable part of demand is needed
- Knowledge of demand composition in terms of load category is not sufficient
  - the information about dynamic response of aggregate demand at bulk supply point before and after the shift of controllable load is needed

#### **Estimation of demand composition**

#### 1. Assuming that we have online measurements from advanced smart meters installed at individual customer sites

#### **Demand profile**



#### **Probabilistic estimation of Q**



### 2. Assuming that we don't have any online measurements from individual customers



#### Is this all we need?

- **Demand composition** affects demand (load) dynamic response following small or large voltage (predominantly) or frequency disturbance in the network
  - Changing of transformer tap position
  - Fault in the system
- Different **dynamic response of the load** will affect overall dynamic response of the system (voltage, frequency or angular stability of the system)
  - The contribution of the load (with given composition) to system dynamic response depends on
    - The size of the load
    - The location of the load

#### **Responses of different load categories**

1.05

0.95

0.9

0.8

0.75

0.7

0.65<sup>L</sup>

a)

Upper Limit

Lower Limit

**Dish Washer** 

Refrigerator

Drver

t (sec)

2

1

Most Probable Response

Average Response

**Room Air Conditioner** Washing Machine



Real power responses to a step reduction in voltage for SMPS: a) responses obtained from 500 MC simulations; b) probability histogram of steady-state power after voltage drop; c) upper and lower limit of the responses and the

a) real power responses, and b) reactive power response for residential and commercial motors with most probable and average response specified

5

0.9

0.8

0.7

0.5

0.4

0.3

0.2└─ 0

(n. d) 0.6

most probable response



a) small industrial IM P response, and b) large industrial IM P response to step down voltage; c) small industrial IM Q response, and d) large industrial IM Q response to step down voltage. (The upper and lower limit and the average responses are also shown.)

b)

2

t (sec)

з

4

### The effect of demand profile on dynamic response of the load



Comparison of different a) P and b) Q responses at different times of day (solid line: 03:00; dashed line: 04:00; dash-dot line: 12:00; dotted line: 18:00)

### How it can be used for voltage control

#### MANCHESTER

#### **Effect of demand management**



#### **Change in demand & composition**



#### **Change in demand composition**









 $\Delta V / \Delta P = (V0-Vc)/(Po-Pc)$  from operating point to critical point at **peak** (above) and **low** (below) time



0.2

0.4

0.6

0.8

#### Summary

#### Given

- On-line measurements form installed smart meters
- General information about demand composition at a bus (e.g., 30% commercial, 10% industrial and 60% domestic)
- Standard P, V and Q (or a combination of those) half-hourly (or at other time intervals) measurements over some period of time in the past
- Weather forecast for the following day

#### It can be forecasted/estimated

- Total P and Q demand
- Demand composition in terms of categories
- Demand composition in terms of controllable and non-controllable demand
- Dynamic P and Q response

at that bus (aggregation point) at any given time "now" or in the future) and how it will change if we "move" part of demand to a different hour

